metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

A tetrasilver(I)ditungsten(VI) cluster with sulfide and bis(diphenylphosphino)methane ligands

Rong Wang,^a Li-Li Song,^a Ke-Yi Hu,^a* Qiong-Hua Jin^a and Cun-Lin Zhang^b

^aDepartment of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China, and ^bBeijing Key Laboratory for Terahertz Spectroscopy and Imaging, Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Capital Normal University, Beijing 100048, People's Republic of China Correspondence e-mail: jingh204@163.com

Received 9 July 2010; accepted 25 August 2010

Key indicators: single-crystal X-ray study; T = 93 K; mean $\sigma(C-C) = 0.007$ Å; R factor = 0.039; wR factor = 0.089; data-to-parameter ratio = 20.5.

The asymmetric unit of the title complex, [Ag₄W₂S₈- $(C_{25}H_{22}P_2)_3]$ ·2C₃H₇NO, tris[μ_2 -bis(diphenylphosphino)methane]-3: $6\kappa^2 P:P';4:5\kappa^2 P:P';5:6\kappa^2 P:P'-\mu_5$ -sulfido-2:3:4:5: $6\kappa^5 S-\mu_3$ sulfido-1:3:4 κ^3 S-tetra- μ_2 -sulfido-1:3 κ^2 S;1:4 κ^2 S;2:5 κ^2 S;2:6 κ^2 Sdisulfido-1kS,2kS-tetrasilver(I)ditungsten(VI) N,N-dimethylformamide disolvate, contains two $[WS_4]^{2-}$ anions, four silver cations, three bidentate-bridging bis(diphenylphosphino)methane (dppm) ligands and two N,N-dimethylformamide (DMF) solvent molecules. The coordination geometry of each Ag atom is distorted tetrahedral. Two Ag ions are coordinated by μ_2 -S and μ_5 -S atoms, and by two P atoms from two dppm ligands, while the other two Ag atoms are coordinated by μ_2 -S, μ_3 -S and μ_5 -S atoms, and by one P atom from a dppm ligand.

Related literature

For related structures, see: Yu et al. (2001). For general background to Mo(W)-Cu(Ag)-S clusters derived from tetrathiotungstate and tetrathiomolybdate $[MS_4]^{2-}(M = Mo,$ W) synthons, see: George et al. (2000, 2003); Hong et al. (1997); Lang et al. (2006); Niu et al. (2005); Ren et al. (2006); Shi et al. (1995); Yu et al. (2001); Zhang et al. (2000, 2004).

Experimental

Crystal data

 $[Ag_4W_2S_8(C_{25}H_{22}P_2)_3] \cdot 2C_3H_7NO$ $M_r = 2354.95$ Monoclinic, $P2_1/c$ a = 22.931 (2) Å b = 14.0395 (12) Å c = 27.855 (3) Å $\beta = 107.224 \ (1)^{\circ}$

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.262, \ \tilde{T}_{\max} = 0.281$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	950 para
$wR(F^2) = 0.089$	H-atom p
S = 1.14	$\Delta \rho_{\rm max} =$
19520 reflections	$\Delta \rho_{\min} =$

 $V = 8565.6 (14) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 3.93 \text{ mm}^-$ T = 93 K $0.47 \times 0.43 \times 0.43 \text{ mm}$

69256 measured reflections 19520 independent reflections 18777 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.045$

meters parameters constrained 1.20 e Å⁻ $-1.36 \text{ e} \text{ Å}^{-3}$

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

This work was supported by the National Keystone Basic Research Program (973 Program) under grant No. 2007CB310408, No. 2006CB302901 and the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality. It was also supported by the State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2590).

References

- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- George, G. N., Pickering, I. J., Yu, E. Y., Harris, H. H., Gailer, J., Klein, D., Lichtmannegger, J. & Summer, K. H. (2003). J. Am. Chem. Soc. 125, 1704– 1705.
- George, G. N., Pickering, I. J., Yu, E. Y., Prince, R. C., Bursakov, S. A., Bursakov, O. Y. & Moura, I. J. (2000). J. Am. Chem. Soc. 122, 8321–8322.
- Higashi, T. (1995). *ABSCOR*. Rigaku Corporation, Tokyo, Japan. Hong, M., Wu, D., Cao, R., Lei, X., Liu, H. & Lu, J. (1997). *Inorg. Chim. Acta*, **258**, 25–32.
- Lang, J. P., Xu, Q. F., Zhang, W. H., Li, H. X., Ren, Z. G., Chen, J. X. & Zhang, Y. (2006). *Inorg. Chem.* 45, 10487–10496.

- Niu, Y. Y., Song, Y. L., Hou, H. W. & Zhu, Y. (2005). *Inorg. Chem.* 44, 2553–2559.
- Ren, Z. G., Li, H. X., Liu, G. F., Zhang, W. H., Lang, J. P., Zhang, Y. & Song, Y. L. (2006). Organometallics, 25, 4351–4357.
- Rigaku (2004). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shi, S., Chen, Z. R., Hou, H. W., Xin, X. Q. & Yu, K. B. (1995). *Chem. Mater.* 7, 1519–1524.
- Yu, H., Xu, Q. F., Sun, Z. R., Ji, S. Z., Chen, J. X., Liu, Q., Lang, J. P. & Tatsumi, K. (2001). *Chem. Commun.* pp. 2614–2615.
- Zhang, W. J., Behrens, A., Galtjens, J., Ebel, M., Wu, X. T. & Rehder, D. (2004). Inorg. Chem. 43, 3020–3023.
- Zhang, Q. F., Xiong, Y. N., Lai, T. S., Ji, W. & Xin, X. Q. (2000). J. Phys. Chem. B, 204, 3446–3449.

Acta Cryst. (2010). E66, m1185-m1186 [doi:10.1107/S1600536810034197]

A tetrasilver(I)ditungsten(VI) cluster with sulfide and bis(diphenylphosphino)methane ligands

R. Wang, L.-L. Song, K.-Y. Hu, Q.-H. Jin and C.-L. Zhang

Comment

In the recent years, Mo(W)—Cu(Ag)—S clusters derived from the well known synthons tetrathiotungstate and tetrathiomolybdate($[MS_4]^{2-}(M=Mo, W)$) have been extensively investigated due to their rich structural chemistry (Zhang *et al.*, 2000; Zhang *et al.*, 2004; Lang *et al.*, 2006; Ren *et al.*, 2006) and potential applications in biological systems (George *et al.*, 2000; George *et al.* 2003), and optical materials (Shi *et al.*, 1995; Hong *et al.*, 1997; Niu *et al.*, 2005). Herein a new complex [(WS_4)_2Ag_4(dppm)_3].2DMF (1) [dppm=bis(diphenylphosphino)methane,DMF=N,N-dimethylformamide] is reported.

The asymmetric unit contains two $[WS_4]^{2-}$ anions, four silver cations, three bridging dppm ligands and two DMF solvent molecules(Fig. 1). One $[WS_4]^{2-}$ anion bridges two Ag atoms whereas the other $[WS_4]^{2-}$ anion bridges four Ag atoms. In both anions three sulfur atoms are coordinating to silver atoms whereas the W=S unit remaining intact. There are three kinds of bridging S atom: μ_2 -S (atoms S1, S3, S6 and S7, each is bonded to one W and one Ag atom), μ_3 -S (S2, bonded to W1, Ag1 and Ag2) and μ_5 -S (S5, bonded to W2 and four Ag atoms).

In complex 1, Ag1 and Ag2 are coordinated by one P atom from one dppm ligand, one μ_2 -S atom, one μ_3 -S atom and one μ_5 -S, while Ag3 and Ag4 are coordinated by two P atoms from two dppm ligands, one μ_2 -S atom and one μ_5 -S atom. It is noticeable that the coordination mode of μ_5 -S bonding to mixed metal ions is unique.

In two $[WS_4]^{2-}$ units, the average length of W- μ_2 -S (2.2085 Å) is longer than that of W=S (2.1496 Å), but is shorter than those of W- μ_3 -S of (2.273 Å) and W- μ_5 -S (2.7102 Å). The Ag—S bond distances are in the range of 2.5140 (12)–2.8409 (12) Å. The average distance of Ag1(Ag2)—P (2.3919 Å) is shorter than that of Ag3(Ag4)—P.

Interestingly, the fragment $[(WS_4)_2Ag_4(dppm)_3]$ in the title complex I is an isomer of $[(WS_4)_2Ag_4(dppm)_3](II)(Yu$ *et al.* $, 2001) (Figure 2). The main difference being the occurence of the <math>\mu_5$ -S in complex I. Consequently, in complex I each Ag atom is four-coordinated, while in complex II two Ag atoms are three-coordinated, the other two Ag atoms are four-coordinated. The mean distance of W—S(2.086 Å) in I is shorter than that observed in complex II (2.136 Å). The average W—Ag length in complex I (3.0356 Å) is similar to that in complex II (3.0406 Å).

The formation of this two isomers may be related to the choice of the solvent. Complex I was synthesized in the mixed solvents DMF and MeCN, while complex II is obtained in CH_2Cl_2 . In this paper, complex I was prepared by using different Ag salts as starting materials: AgBF₄ or AgNO₃. From this we know, the fragment [(WS₄)₂Ag₄(dppm)₃] may be easily obtained because of its stable structure with high symmetry.

Experimental

The title complex was prepared by the reaction of AgNO₃, bis(diphenylphosphino)methane(dppm), $(NH_4)_2WS_4$ and Phen (phenathroline) in molar ratio of 2:4:1:0.5 in the mixed solvents MeCN and DMF(10 ml,V/V=1/1). The mixture was stirred at room temperature for 8 h, then filtered. Subsequent slow evaporation of the filtrate resulted in the formation of yellow crystals of the title complex. Crystals suitable for single-crystal X-ray diffraction were selected directly from the sample as prepared. Analysis found(percentage): C 41.33, H 3.40, N 1.18; calculated: C 41.31, H 3.42, N 1.19.

Alternative method to synthesize complex 1 is using AgBF₄ in place of AgNO₃ in the starting materials.

Refinement

Metal atom centers were located from the E-maps and other non-hydrogen atoms were located in successive difference Fourier syntheses. The final refinements were performed by full matrix least-squares methods with anisotropic thermal parameters for non-hydrogen atoms on F^2 .

The final refinements were performed with isotropic thermal parameters. All hydrogen atoms were located in the calculated sites and included in the final refinement in the riding model approximation with displacement parameters derived from the parent atoms to which they were bonded.

Figures

Fig. 1. Molecular view of compound I with the atom labeling scheme. Ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

Fig. 2. Comparison of the two isomers [(WS₄)₂Ag₄(dppm)₃] I and II.

tris[μ_2 -bis(diphenylphosphino)methane]- $3:6\kappa^2 P:P';4:5\kappa^2 P:P';5:6\kappa^2 P:P'-\mu_5$ -sulfido- $2:3:4:5:6\kappa^5 S-\mu_3$ -sulfido- $1:3:4\kappa^3 S$ - tetra- μ_2 -sulfido- $1:3\kappa^2 S;1:4\kappa^2 S;2:5\kappa^2 S;2:6\kappa^2 S$ -disulfido- $1\kappa S,2\kappa S$ - tetrasilver(I)ditungsten(VI) *N*,*N*-dimethylformamide disolvate

Crystal data $[Ag_4W_2S_8(C_{25}H_{22}P_2)_3]$ ·2C₃H₇NO F(000) = 4600 $M_r = 2354.95$ $D_x = 1.826 \text{ Mg m}^{-3}$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 22.931 (2) Å b = 14.0395 (12) Å c = 27.855 (3) Å $\beta = 107.224$ (1)° V = 8565.6 (14) Å³ Z = 4

Data collection

Mo K α radiation, $\lambda = 0.71073$ Å
Cell parameters from 27248 reflections
$\theta = 3.0-27.5^{\circ}$
$\mu = 3.93 \text{ mm}^{-1}$
T = 93 K
Block, yellow
$0.47 \times 0.43 \times 0.43 \text{ mm}$

Rigaku R-AXIS RAPID diffractometer	19520 independent reflections
Radiation source: Rotating Anode	18777 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.045$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
Absorption correction: multi-scan (<i>ABSCOR</i> ; Higashi, 1995)	$h = -29 \rightarrow 20$
$T_{\min} = 0.262, \ T_{\max} = 0.281$	$k = -18 \rightarrow 18$
69256 measured reflections	<i>l</i> = −35→36

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.089$	H-atom parameters constrained
<i>S</i> = 1.14	$w = 1/[\sigma^2(F_o^2) + (0.0341P)^2 + 13.8363P]$ where $P = (F_o^2 + 2F_c^2)/3$
19520 reflections	$(\Delta/\sigma)_{\rm max} = 0.009$
950 parameters	$\Delta \rho_{max} = 1.20 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -1.36 \ e \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
W1	0.685156 (8)	0.527538 (12)	0.590934 (6)	0.00959 (5)
W2	0.828154 (8)	0.329261 (13)	0.458854 (7)	0.01383 (5)
Ag1	0.701283 (16)	0.55717 (2)	0.490031 (13)	0.01578 (7)
Ag2	0.797387 (15)	0.41531 (2)	0.598751 (13)	0.01418 (7)
Ag3	0.776781 (15)	0.20725 (2)	0.532723 (12)	0.01373 (7)
Ag4	0.693052 (15)	0.34050 (2)	0.401396 (12)	0.01168 (7)
S1	0.60897 (5)	0.52790 (8)	0.52055 (4)	0.0157 (2)
S2	0.77015 (5)	0.59208 (8)	0.57931 (4)	0.0129 (2)
S3	0.70064 (5)	0.37936 (8)	0.62017 (4)	0.0136 (2)
S4	0.65859 (5)	0.61359 (8)	0.64489 (4)	0.0154 (2)
S5	0.75460 (5)	0.37745 (8)	0.49394 (4)	0.0136 (2)
S6	0.84065 (6)	0.17432 (9)	0.46535 (5)	0.0247 (3)
S7	0.79958 (5)	0.36970 (9)	0.37903 (4)	0.0156 (2)
S8	0.91157 (6)	0.40177 (12)	0.49661 (5)	0.0332 (3)
P1	0.70165 (5)	0.64377 (8)	0.41615 (4)	0.0122 (2)
P2	0.90214 (5)	0.37198 (8)	0.63471 (4)	0.0119 (2)
P3	0.86722 (5)	0.16721 (8)	0.60311 (4)	0.0123 (2)
P4	0.68282 (5)	0.11687 (8)	0.49608 (4)	0.0110 (2)
P5	0.65584 (5)	0.17597 (8)	0.38414 (4)	0.0100 (2)
P6	0.64487 (5)	0.47428 (8)	0.34787 (4)	0.0112 (2)
C1	0.7730 (2)	0.7088 (3)	0.42479 (17)	0.0187 (10)
C2	0.8271 (2)	0.6582 (4)	0.4461 (2)	0.0272 (12)
H2	0.8255	0.5942	0.4567	0.033*
C3	0.8832 (3)	0.7019 (5)	0.4518 (2)	0.0370 (15)
Н3	0.9200	0.6673	0.4655	0.044*
C4	0.8853 (3)	0.7961 (5)	0.4374 (2)	0.0437 (18)
H4	0.9236	0.8258	0.4412	0.052*
C5	0.8326 (3)	0.8468 (5)	0.4178 (2)	0.0433 (17)
Н5	0.8345	0.9118	0.4090	0.052*
C6	0.7761 (3)	0.8030 (4)	0.4107 (2)	0.0288 (12)
Н6	0.7396	0.8377	0.3962	0.035*
C7	0.6402 (2)	0.7312 (3)	0.39761 (17)	0.0153 (9)
C8	0.6100 (2)	0.7549 (3)	0.43287 (19)	0.0203 (10)
H8	0.6220	0.7256	0.4651	0.024*
С9	0.5629 (3)	0.8202 (4)	0.4214 (2)	0.0282 (12)
Н9	0.5431	0.8370	0.4457	0.034*
C10	0.5449 (2)	0.8609 (4)	0.3743 (2)	0.0281 (12)
H10	0.5121	0.9051	0.3661	0.034*
C11	0.5742 (3)	0.8380 (4)	0.3387 (2)	0.0257 (11)
H11	0.5612	0.8665	0.3064	0.031*
C12	0.6221 (2)	0.7741 (3)	0.35032 (18)	0.0191 (10)
H12	0.6426	0.7594	0.3262	0.023*
C13	0.6964 (2)	0.5780 (3)	0.35824 (16)	0.0130 (9)
H13A	0.7378	0.5560	0.3592	0.016*
H13B	0.6820	0.6220	0.3293	0.016*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C14	0.5696 (2)	0.5181 (3)	0.34616 (17)	0.0141 (9)
C15	0.5491 (2)	0.5052 (3)	0.38825 (17)	0.0155 (9)
H15	0.5748	0.4752	0.4174	0.019*
C16	0.4916 (2)	0.5358 (3)	0.38777 (19)	0.0201 (10)
H16	0.4786	0.5278	0.4168	0.024*
C17	0.4532 (2)	0.5778 (3)	0.3455 (2)	0.0224 (11)
H17	0.4136	0.5978	0.3453	0.027*
C18	0.4728 (2)	0.5907 (4)	0.30313 (19)	0.0236 (11)
H18	0.4464	0.6193	0.2738	0.028*
C19	0.5311 (2)	0.5619 (3)	0.30380 (19)	0.0196 (10)
H19	0.5446	0.5722	0.2751	0.024*
C20	0.6363 (2)	0.4418 (3)	0.28259 (18)	0.0152 (9)
C21	0.6730 (2)	0.4792 (3)	0.25509 (17)	0.0169 (9)
H21	0.7017	0.5278	0.2694	0.020*
C22	0.6680 (2)	0.4458 (4)	0.20679 (19)	0.0234 (11)
H22	0.6928	0.4719	0.1882	0.028*
C23	0.6265 (2)	0.3743 (4)	0.18612 (19)	0.0256 (11)
H23	0.6230	0.3515	0.1533	0.031*
C24	0.5905 (3)	0.3362 (4)	0.21297 (19)	0.0269 (12)
H24	0.5630	0.2860	0.1989	0.032*
C25	0.5941 (2)	0.3709 (3)	0.26080 (18)	0.0201 (10)
H25	0.5678	0.3462	0.2785	0.024*
C26	0.57227 (19)	0.1766 (3)	0.36167 (16)	0.0112 (8)
C27	0.5416 (2)	0.2602 (3)	0.36530 (18)	0.0173 (9)
H27	0.5644	0.3144	0.3807	0.021*
C28	0.4787 (2)	0.2666 (4)	0.3470 (2)	0.0244 (11)
H28	0.4587	0.3248	0.3496	0.029*
C29	0.4448 (2)	0.1873 (4)	0.32495 (19)	0.0215 (10)
H29	0.4016	0.1913	0.3118	0.026*
C30	0.4751 (2)	0.1017 (3)	0.32236 (18)	0.0189 (10)
H30	0.4522	0.0465	0.3087	0.023*
C31	0.5378 (2)	0.0973 (3)	0.33959 (17)	0.0173 (9)
H31	0.5580	0.0395	0.3364	0.021*
C32	0.6776 (2)	0.1222 (3)	0.33224 (16)	0.0114 (8)
C33	0.6938 (2)	0.1824 (3)	0.29875 (17)	0.0162 (9)
H33	0.6965	0.2491	0.3049	0.019*
C34	0.7063 (2)	0.1462 (4)	0.25613 (18)	0.0201 (10)
H34	0.7169	0.1880	0.2333	0.024*
C35	0.7029 (2)	0.0485 (4)	0.24736 (18)	0.0209 (10)
H35	0.7113	0.0236	0.2184	0.025*
C36	0.6874 (2)	-0.0127 (3)	0.28086 (18)	0.0200 (10)
H36	0.6848	-0.0793	0.2747	0.024*
C37	0.6757 (2)	0.0242 (3)	0.32364 (18)	0.0183 (10)
H37	0.6664	-0.0178	0.3471	0.022*
C38	0.6761 (2)	0.0792 (3)	0.43110 (16)	0.0134 (9)
H38A	0.7154	0.0511	0.4304	0.016*
H38B	0.6446	0.0288	0.4212	0.016*
C39	0.6064 (2)	0.1611 (3)	0.49084 (16)	0.0119 (8)
C40	0.5981 (2)	0.2566 (3)	0.50130 (18)	0.0187 (10)

H40	0.6324	0.2970	0.5143	0.022*
C41	0.5393 (2) 0.2920 (4) 0.4926		0.4926 (2)	0.0233 (11)
H41	0.5335	0.3568	0.4998	0.028*
C42	0.4894 (2)	0.2340 (4)	0.4736 (2)	0.0248 (11)
H42	0.4494	0.2594	0.4672	0.030*
C43	0.4970 (2)	0.1386 (4)	0.46372 (18)	0.0193 (10)
H43	0.4624	0.0985	0.4513	0.023*
C44	0.5557 (2)	0.1020 (3)	0.47208 (17)	0.0159 (9)
H44	0.5612	0.0370	0.4650	0.019*
C45	0.6863 (2)	0.0014 (3)	0.52730 (17)	0.0144 (9)
C46	0.7188 (2)	-0.0738 (3)	0.51465 (18)	0.0198 (10)
H46	0.7371	-0.0662	0.4885	0.024*
C47	0.7243 (3)	-0.1603 (4)	0.54060 (19)	0.0254 (11)
H47	0.7460	-0.2117	0.5318	0.030*
C48	0.6979 (2)	-0.1708 (4)	0.57924 (19)	0.0245 (11)
H48	0.7016	-0.2295	0.5968	0.029*
C49	0.6666 (2)	-0.0966 (4)	0.59207 (19)	0.0246 (11)
H49	0.6486	-0.1044	0.6185	0.030*
C50	0.6608 (2)	-0.0102 (4)	0.56679 (18)	0.0204 (10)
H50	0.6395	0.0410	0.5763	0.024*
C51	0.9045 (2)	0.0612 (3)	0.58746 (16)	0.0156 (9)
C52	0.8728 (3)	-0.0241 (4)	0.5823 (2)	0.0297 (12)
H52	0.8345	-0.0265	0.5890	0.036*
C53	0.8965 (3)	-0.1062(4)	0.5675 (2)	0.0377 (15)
Н53	0.8744	-0.1643	0.5638	0.045*
C54	0.9519 (3)	-0.1034(4)	0.5582 (2)	0.0327 (13)
H54	0.9682	-0.1597	0.5483	0.039*
C55	0.9841 (3)	-0.0190(4)	0.5631 (2)	0.0297 (12)
Н55	1.0223	-0.0171	0.5563	0.036*
C56	0.9603 (2)	0.0633 (4)	0.5781 (2)	0.0246 (11)
H56	0.9826	0.1212	0.5819	0.030*
C57	0.8633 (2)	0.1414 (3)	0.66613 (17)	0.0137 (9)
C58	0.9155 (2)	0.1100 (3)	0.70346 (17)	0.0182 (10)
H58	0.9518	0.0962	0.6950	0.022*
C59	0.9142 (2)	0.0992 (4)	0.75240 (18)	0.0200 (10)
Н59	0.9496	0.0777	0.7775	0.024*
C60	0.8614 (2)	0.1197 (4)	0.76500 (18)	0.0209 (10)
H60	0.8610	0.1132	0.7989	0.025*
C61	0.8097 (2)	0.1492 (3)	0.72898 (19)	0.0188 (10)
H61	0.7737	0.1628	0.7379	0.023*
C62	0.8100 (2)	0 1593 (3)	0 67889 (18)	0.0170 (9)
H62	0.7739	0.1783	0.6538	0.020*
C63	0.92682 (19)	0.2589 (3)	0.61403 (16)	0.0116 (8)
H63A	0.9638	0.2360	0.6399	0.014*
H63B	0.9377	0.2695	0.5826	0.014*
C64	0.9232 (2)	0.3680 (3)	0.70338 (17)	0.0138 (9)
C65	0.9833 (2)	0.3707 (4)	0.73330 (18)	0.0212 (10)
H65	1.0153	0.3700	0.7181	0.025*
C66	0.9974 (2)	0.3745 (4)	0.78542 (19)	0.0251 (11)

H66	1.0388	0.3787	0.8055	0.030*
C67	0.9514 (3)	0.3723 (4)	0.80778 (19)	0.0286 (12)
H67	0.9612	0.3739	0.8434	0.034*
C68	0.8912 (3)	0.3677 (4)	0.77874 (19)	0.0277 (12)
H68	0.8595	0.3658	0.7943	0.033*
C69	0.8771 (2)	0.3658 (3)	0.72647 (18)	0.0191 (10)
H69	0.8357	0.3630	0.7065	0.023*
C70	0.9557 (2)	0.4595 (3)	0.62351 (17)	0.0142 (9)
C71	1.0132 (2)	0.4363 (3)	0.61976 (17)	0.0153 (9)
H71	1.0264	0.3718	0.6227	0.018*
C72	1.0514 (2)	0.5073 (3)	0.61178 (17)	0.0173 (9)
H72	1.0904	0.4913	0.6087	0.021*
C73	1.0329 (2)	0.6012 (4)	0.60827 (18)	0.0205 (10)
H73	1.0593	0.6496	0.6030	0.025*
C74	0.9756 (2)	0.6252 (4)	0.61239 (19)	0.0226 (11)
H74	0.9633	0.6900	0.6108	0.027*
C75	0.9368 (2)	0.5540 (3)	0.61882 (19)	0.0193 (10)
H75	0.8970	0.5699	0.6200	0.023*
01	0.71217 (18)	0.7272 (3)	0.26992 (15)	0.0286 (9)
N1	0.78968 (19)	0.6532 (3)	0.24912 (16)	0.0215 (9)
C76	0.7377 (2)	0.7023 (3)	0.2391 (2)	0.0230 (11)
H76	0.7188	0.7196	0.2050	0.028*
C77	0.8220 (2)	0.6244 (4)	0.3001 (2)	0.0287 (12)
H77A	0.8074	0.6621	0.3239	0.043*
H77B	0.8659	0.6350	0.3065	0.043*
H77C	0.8145	0.5567	0.3044	0.043*
C78	0.8173 (3)	0.6276 (4)	0.2097 (2)	0.0303 (12)
H78A	0.7921	0.6525	0.1773	0.045*
H78B	0.8199	0.5581	0.2078	0.045*
H78C	0.8583	0.6550	0.2177	0.045*
O2	0.9365 (2)	0.6952 (4)	0.83007 (18)	0.0508 (13)
N2	0.8745 (2)	0.6405 (3)	0.75669 (18)	0.0266 (10)
C79	0.8866 (3)	0.6654 (4)	0.8036 (2)	0.0352 (14)
H79	0.8546	0.6604	0.8186	0.042*
C80	0.9225 (3)	0.6454 (5)	0.7310 (3)	0.0405 (15)
H80A	0.9587	0.6772	0.7530	0.061*
H80B	0.9072	0.6815	0.6997	0.061*
H80C	0.9334	0.5808	0.7235	0.061*
C81	0.8168 (3)	0.6078 (5)	0.7255 (3)	0.0424 (16)
H81A	0.7874	0.6068	0.7448	0.064*
H81B	0.8213	0.5434	0.7135	0.064*
H81C	0.8021	0.6507	0.6966	0.064*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
W1	0.00959 (9)	0.01051 (8)	0.00897 (8)	0.00050 (6)	0.00322 (7)	0.00076 (6)
W2	0.01041 (9)	0.02124 (10)	0.00953 (9)	-0.00198 (7)	0.00248 (7)	0.00324 (7)

Ag1	0.01769 (18)	0.01876 (17)	0.01144 (16)	0.00004 (13)	0.00515 (13)	0.00419 (13)
Ag2	0.00979 (16)	0.01623 (16)	0.01571 (17)	0.00196 (12)	0.00253 (13)	0.00284 (13)
Ag3	0.01196 (17)	0.01387 (16)	0.01320 (16)	-0.00216 (12)	0.00038 (13)	0.00199 (12)
Ag4	0.01172 (16)	0.01111 (15)	0.01114 (15)	-0.00089 (12)	0.00175 (12)	0.00073 (12)
S1	0.0119 (5)	0.0230 (6)	0.0107 (5)	-0.0008 (4)	0.0009 (4)	0.0018 (4)
S2	0.0118 (5)	0.0124 (5)	0.0151 (5)	-0.0015 (4)	0.0049 (4)	0.0014 (4)
S3	0.0149 (5)	0.0121 (5)	0.0154 (5)	0.0014 (4)	0.0069 (4)	0.0030 (4)
S4	0.0166 (6)	0.0149 (5)	0.0165 (5)	0.0016 (4)	0.0077 (4)	-0.0022 (4)
S5	0.0178 (6)	0.0134 (5)	0.0100 (5)	-0.0002 (4)	0.0047 (4)	0.0002 (4)
S6	0.0313 (7)	0.0250 (6)	0.0236 (6)	0.0131 (5)	0.0168 (6)	0.0079 (5)
S7	0.0139 (6)	0.0241 (6)	0.0093 (5)	-0.0017 (4)	0.0043 (4)	0.0032 (4)
S8	0.0199 (7)	0.0608 (10)	0.0151 (6)	-0.0208 (6)	-0.0006 (5)	0.0056 (6)
P1	0.0146 (6)	0.0116 (5)	0.0102 (5)	-0.0019 (4)	0.0036 (4)	0.0007 (4)
P2	0.0103 (5)	0.0127 (5)	0.0118 (5)	-0.0002 (4)	0.0019 (4)	0.0012 (4)
Р3	0.0126 (6)	0.0123 (5)	0.0105 (5)	-0.0008 (4)	0.0012 (4)	0.0014 (4)
P4	0.0119 (5)	0.0107 (5)	0.0099 (5)	-0.0015 (4)	0.0026 (4)	0.0009 (4)
Р5	0.0110 (5)	0.0100 (5)	0.0089 (5)	-0.0003 (4)	0.0027 (4)	0.0002 (4)
P6	0.0111 (6)	0.0112 (5)	0.0111 (5)	0.0000 (4)	0.0032 (4)	0.0017 (4)
C1	0.024 (3)	0.021 (2)	0.014 (2)	-0.0047(19)	0.0099 (19)	-0.0057(19)
C2	0.020 (3)	0.031 (3)	0.030 (3)	-0.004(2)	0.006 (2)	-0.009(2)
C3	0.020(3)	0.051(3)	0.034(3)	-0.010(3)	0.007(2)	-0.016(3)
C4	0.021(3)	0.067 (5)	0.032(3)	-0.035(3)	0.020(3)	-0.021(3)
C5	0.059(1)	0.007(3)	0.032(3)	-0.030(3)	0.020(3)	-0.005(3)
C6	0.030(1)	0.011(1) 0.027(3)	0.010(1)	-0.015(2)	0.010(3)	0.003(2)
C7	0.031(3)	0.027(3)	0.023(3)	-0.0027(17)	0.009(2)	0.003(2)
C8	0.010(2)	0.011(2)	0.017(2)	-0.0027(17)	0.0010(2)	-0.0008(19)
C9	0.023(3)	0.010(2)	0.021(2)	0.0001(1)	0.010(2)	0.0000(1))
C3	0.032(3)	0.022(3)	0.030(3)	0.004(2)	0.019(3)	0.004(2)
C10	0.024(3)	0.022(3)	0.039(3)	0.004(2)	0.009(2)	0.005(2)
C12	0.029(3)	0.015(2)	0.025(3)	0.002(2)	0.008(2)	0.000(2)
C12	0.028(3)	0.013(2)	0.013(2)	-0.0012(17)	0.003(2)	0.0018(13) 0.0031(17)
C13	0.014(2)	0.014(2)	0.010(2)	-0.0012(17)	0.0027(17)	-0.0031(17)
C14	0.015(2)	0.014(2)	0.015(2)	-0.0031(17)	0.0003(18)	-0.0027(17)
C13	0.013(2)	0.013(2)	0.010(2)	-0.0023(17)	0.0044(18)	-0.0044(18)
C10	0.018(3)	0.024(3)	0.019(2)	-0.0012(19)	0.008(2)	-0.003(2)
C17	0.013(2)	0.020(2)	0.034 (3)	0.0037(19)	0.009(2)	-0.001(2)
C18	0.020 (3)	0.026 (3)	0.021 (3)	0.004 (2)	0.000 (2)	0.004 (2)
C19	0.019 (3)	0.021 (2)	0.021 (2)	0.0055 (19)	0.008 (2)	0.006 (2)
C20	0.014 (2)	0.010 (2)	0.020 (2)	0.0033 (17)	0.0036 (18)	0.0031 (18)
C21	0.013 (2)	0.022 (2)	0.015 (2)	0.0022 (18)	0.0031 (18)	0.0002 (18)
C22	0.023 (3)	0.032 (3)	0.016 (2)	0.009 (2)	0.007(2)	0.001 (2)
C23	0.031 (3)	0.028 (3)	0.014 (2)	0.003 (2)	0.001 (2)	-0.003 (2)
C24	0.042 (3)	0.015 (2)	0.017 (2)	-0.005 (2)	-0.002 (2)	-0.0003 (19)
C25	0.025 (3)	0.016 (2)	0.016 (2)	-0.0064 (19)	0.000 (2)	0.0033 (18)
C26	0.009 (2)	0.017 (2)	0.0078 (19)	0.0001 (16)	0.0029 (16)	0.0040 (16)
C27	0.018 (2)	0.016 (2)	0.019 (2)	-0.0002 (18)	0.0084 (19)	0.0023 (18)
C28	0.019 (3)	0.020 (2)	0.037 (3)	0.005 (2)	0.012 (2)	0.000 (2)
C29	0.011 (2)	0.033 (3)	0.022 (3)	-0.002 (2)	0.0048 (19)	0.002 (2)
C30	0.018 (2)	0.021 (2)	0.017 (2)	-0.0063 (19)	0.0049 (19)	-0.0068 (19)
C31	0.019 (2)	0.018 (2)	0.014 (2)	-0.0008 (18)	0.0030 (19)	-0.0003 (18)

C22	0.012(2)	0.012 (2)	0.0000 (10)	0.001((10))	0.0021 (1()	0.0014(10)
C32	0.013(2)	0.012(2)	0.0088(19)	0.0016(10)	0.0031(10)	-0.0014(10)
C33	0.018(2)	0.014(2)	0.017(2)	0.0010(17)	0.0030(19)	0.0008 (18)
C34	0.020(3)	0.020(3)	0.017(2)	-0.003(2)	0.010(2)	0.002(2)
C35	0.024(3)	0.027(3)	0.013(2)	0.000(2)	0.007(2)	-0.004(2)
C30	0.028(3)	0.011(2)	0.020(2)	0.0032 (19)	0.006(2)	-0.0052(18)
C37	0.023(3)	0.017(2)	0.014(2)	0.0002 (19)	0.007(2)	0.0023 (18)
C38	0.016 (2)	0.012 (2)	0.012(2)	-0.0024 (17)	0.0048 (18)	-0.0011(17)
C39	0.011 (2)	0.017(2)	0.0081 (19)	-0.0030 (16)	0.0038 (16)	0.0013 (16)
C40	0.018 (2)	0.017(2)	0.019 (2)	-0.0022 (18)	0.0034 (19)	-0.0039 (19)
C41	0.023 (3)	0.017(2)	0.033 (3)	0.003 (2)	0.013 (2)	-0.002 (2)
C42	0.018 (3)	0.033 (3)	0.025 (3)	0.003 (2)	0.009 (2)	-0.003 (2)
C43	0.015 (2)	0.023 (2)	0.019 (2)	-0.0064 (19)	0.0053 (19)	-0.005 (2)
C44	0.017 (2)	0.017 (2)	0.015 (2)	-0.0040 (18)	0.0071 (18)	-0.0027 (18)
C45	0.013 (2)	0.018 (2)	0.012 (2)	-0.0051 (17)	0.0032 (17)	0.0018 (17)
C46	0.028 (3)	0.017 (2)	0.015 (2)	-0.0001 (19)	0.006 (2)	0.0006 (18)
C47	0.037 (3)	0.017 (2)	0.018 (2)	0.000 (2)	0.001 (2)	-0.001 (2)
C48	0.030 (3)	0.018 (2)	0.019 (3)	-0.006 (2)	-0.003(2)	0.002 (2)
C49	0.027 (3)	0.030 (3)	0.017 (2)	-0.006(2)	0.007 (2)	0.009 (2)
C50	0.024 (3)	0.024 (2)	0.015 (2)	0.001 (2)	0.007 (2)	0.0054 (19)
C51	0.019 (2)	0.014 (2)	0.010 (2)	0.0035 (18)	-0.0017 (18)	0.0002 (17)
C52	0.028 (3)	0.023 (3)	0.037 (3)	0.000 (2)	0.008 (3)	-0.003 (2)
C53	0.044 (4)	0.015 (3)	0.051 (4)	-0.004(2)	0.008 (3)	-0.012 (3)
C54	0.050 (4)	0.024 (3)	0.020 (3)	0.011 (3)	0.003 (3)	-0.008 (2)
C55	0.034 (3)	0.027 (3)	0.029 (3)	0.013 (2)	0.011 (2)	0.004 (2)
C56	0.027 (3)	0.020 (2)	0.029 (3)	0.004 (2)	0.011 (2)	0.003 (2)
C57	0.014 (2)	0.013 (2)	0.013 (2)	-0.0018 (17)	0.0026 (17)	0.0019 (17)
C58	0.015 (2)	0.026 (2)	0.014 (2)	-0.0007 (19)	0.0050 (18)	0.0014 (19)
C59	0.019 (3)	0.025 (3)	0.013 (2)	0.001 (2)	0.0019 (19)	0.0066 (19)
C60	0.026 (3)	0.024 (2)	0.014 (2)	-0.002 (2)	0.009 (2)	0.0015 (19)
C61	0.018 (2)	0.018 (2)	0.024 (3)	-0.0007 (18)	0.013 (2)	0.0030 (19)
C62	0.014 (2)	0.015 (2)	0.022 (2)	-0.0009 (17)	0.0066 (19)	0.0015 (18)
C63	0.008 (2)	0.016 (2)	0.012 (2)	-0.0002 (16)	0.0050 (16)	0.0009 (17)
C64	0.017 (2)	0.0093 (19)	0.013 (2)	-0.0019 (17)	0.0017 (18)	-0.0012 (16)
C65	0.018 (3)	0.027 (3)	0.016 (2)	0.002 (2)	0.0018 (19)	0.001 (2)
C66	0.020 (3)	0.030 (3)	0.019 (2)	-0.002 (2)	-0.005 (2)	-0.001 (2)
C67	0.035 (3)	0.036 (3)	0.011 (2)	-0.002 (2)	0.001 (2)	-0.005 (2)
C68	0.034 (3)	0.036 (3)	0.017 (3)	-0.005 (2)	0.013 (2)	-0.006 (2)
C69	0.018 (2)	0.021 (2)	0.018 (2)	-0.0015 (19)	0.0045 (19)	-0.0052 (19)
C70	0.012 (2)	0.017 (2)	0.012 (2)	-0.0031 (17)	0.0015 (17)	0.0004 (17)
C71	0.013 (2)	0.017 (2)	0.014 (2)	-0.0020 (17)	0.0021 (18)	0.0007 (18)
C72	0.016 (2)	0.024 (2)	0.015 (2)	-0.0050 (19)	0.0088 (19)	-0.0020 (19)
C73	0.021 (3)	0.023 (2)	0.016 (2)	-0.008 (2)	0.004 (2)	0.0018 (19)
C74	0.021 (3)	0.017 (2)	0.027 (3)	-0.0029 (19)	0.004 (2)	0.004 (2)
C75	0.010 (2)	0.018 (2)	0.028 (3)	-0.0020 (18)	0.0035 (19)	-0.001 (2)
O1	0.031 (2)	0.0237 (19)	0.035 (2)	0.0058 (16)	0.0170 (18)	0.0087 (17)
N1	0.020 (2)	0.022 (2)	0.023 (2)	-0.0003 (17)	0.0074 (18)	0.0044 (18)
C76	0.021 (3)	0.017 (2)	0.031 (3)	0.0007 (19)	0.009 (2)	0.012 (2)
C77	0.022 (3)	0.034 (3)	0.026 (3)	-0.001 (2)	0.001 (2)	0.008 (2)
C78	0.029 (3)	0.028 (3)	0.037 (3)	0.006 (2)	0.014 (3)	0.004 (2)

02	0.026(2)	0.071 (3)	0.043 (3)	-0.006(2)	-0.008(2)	-0.016(3)
N2	0.017(2)	0.028(2)	0.032(3)	0.0030(18)	0.0038(19)	-0.007(2)
C79	0.029(3)	0.043(4)	0.032(3)	0.004(3)	0.005 (3)	-0.001(3)
C80	0.029(3)	0.045(4)	0.032(3) 0.043(4)	0.001(3)	0.000(3)	-0.006(3)
C81	0.027(3)	0.013(1)	0.015(1)	-0.002(3)	-0.003(3)	-0.016(3)
001	0.027 (5)	0.051(5)	0.000 (1)	0.002 (5)	0.005 (5)	0.010(5)
Gaomatric para	nators (Å °)					
	neiers (A,)		~ • •	~~~		
W1—S4		2.1523 (11)	C32—	-C33		1.390 (6)
WI—SI		2.2062 (11)	C32—	-C37		1.395 (6)
W1—83		2.2240 (11)	C33—	-C34		1.396 (6)
W1—S2		2.2579 (11)	C33—	-H33	(0.9500
W1—Ag2		2.9701 (4)	C34—	-C35		1.391 (7)
W1—Ag1		2.9707 (5)	C34—	-H34	(0.9500
W2—S8		2.1470 (13)	C35—	-C36		1.390 (7)
W2—S6		2.1945 (13)	C35—	-H35	(0.9500
W2—S7		2.1985 (11)	C36—	-C37		1.396 (6)
W2—S5		2.2878 (11)	C36—	-H36	(0.9500
W2—Ag4		3.0410 (4)	C37—	-H37	(0.9500
W2—Ag3		3.1609 (4)	C38—	-H38A	(0.9900
Ag1—P1		2.3924 (12)	C38—	-H38B	(0.9900
Ag1—S1		2.5374 (12)	C39—	-C40		1.396 (6)
Ag1—S2		2.5677 (12)	C39—	-C44	1.398 (6)	
Agl—S5		2.7919 (12)	C40—	-C41		1.390 (7)
Ag2—P2		2.3914 (12)	C40—	-H40	(0.9500
Ag2—S3		2.5132 (11)	C41—	-C42		1.376 (7)
Ag2—S2		2.5772 (11)	C41—	-H41	(0.9500
Ag2—S5		2.8412 (12)	C42—	-C43	1.389 (7)	
Ag3—P4		2.4478 (12)	C42—	-H42	0.9500	
Ag3—P3		2.4602 (12)	C43—	-C44		1.394 (7)
Ag3—S5		2.6096 (12)	C43—	-H43	(0.9500
Ag3—S6		2.7403 (13)	C44—	-H44	(0.9500
Ag4—P6		2.4485 (12)	C45—	-C46		1.396 (7)
Ag4—P5		2.4601 (11)	C45—	-C50		1.400 (6)
Ag4—85		2.5984 (12)	C46—	-C4/	-	1.400 (7)
Ag4—S7		2.7248 (12)	C46—	-H46	(0.9500
PI-CI		1.826 (5)	C47—	-C48		1.390 (8)
PI-C/		1.824 (5)	C4/—	-H4 /	(0.9500
PI-C13		1.831 (4)	C48—	-C49	-	1.3/1 (8)
P2-C/0		1.829 (5)	C48—	-H48	(0.9500
P2		1.830 (5)	C49—	-C50		1.389 (7)
r2		1.835 (4)	C49—	-1149	(0.9500
P3		1.820 (5)	C50—	-H50	(0.9500
r3-031		1.831 (5)	051-	-0.50		1.380(7)
P3-C63		1.836 (4)	C51—	-052		1.58/(/)
P4—C39		1.823 (5)	C52—	-053		1.390 (8)
P4-C45		1.830 (5)	C52—	-H52	(0.9500
P4—C38		1.848 (4)	C53—	-054		1.309 (9)
P5-C32		1.826 (4)	C53—	-H53	(0.9500

P5—C26	1.832 (4)	C54—C55	1.381 (8)
P5—C38	1.847 (4)	C54—H54	0.9500
P6—C14	1.820 (5)	C55—C56	1.394 (7)
P6—C20	1.828 (5)	С55—Н55	0.9500
P6—C13	1.844 (4)	С56—Н56	0.9500
C1—C6	1.387 (7)	C57—C62	1.395 (6)
C1—C2	1.399 (7)	C57—C58	1.403 (6)
C2—C3	1.392 (8)	C58—C59	1.381 (6)
C2—H2	0.9500	С58—Н58	0.9500
C3—C4	1.386 (10)	C59—C60	1.387 (7)
С3—Н3	0.9500	С59—Н59	0.9500
C4—C5	1.369 (10)	C60—C61	1.371 (7)
C4—H4	0.9500	С60—Н60	0.9500
C5—C6	1.394 (8)	C61—C62	1.404 (7)
С5—Н5	0.9500	C61—H61	0.9500
С6—Н6	0.9500	С62—Н62	0.9500
C7—C12	1.395 (6)	С63—Н63А	0.9900
С7—С8	1.400 (6)	С63—Н63В	0.9900
C8—C9	1.380 (7)	C64—C69	1.389 (6)
C8—H8	0.9500	C64—C65	1.385 (7)
C9—C10	1.376 (8)	C65—C66	1.392 (7)
С9—Н9	0.9500	С65—Н65	0.9500
C10—C11	1.388 (8)	C66—C67	1.375 (8)
C10—H10	0.9500	С66—Н66	0.9500
C11—C12	1.381 (7)	C67—C68	1.380 (8)
C11—H11	0.9500	С67—Н67	0.9500
C12—H12	0.9500	C68—C69	1.395 (7)
C13—H13A	0.9900	С68—Н68	0.9500
С13—Н13В	0.9900	С69—Н69	0.9500
C14—C19	1.390 (7)	C70—C71	1.392 (6)
C14—C15	1.399 (6)	C70—C75	1.390 (6)
C15—C16	1.381 (7)	C71—C72	1.388 (6)
C15—H15	0.9500	C71—H71	0.9500
C16—C17	1.376 (7)	C72—C73	1.378 (7)
C16—H16	0.9500	С72—Н72	0.9500
C17—C18	1.394 (7)	C73—C74	1.394 (7)
C17—H17	0.9500	С73—Н73	0.9500
C18—C19	1.390 (7)	C74—C75	1.385 (6)
C18—H18	0.9500	С74—Н74	0.9500
С19—Н19	0.9500	С75—Н75	0.9500
C20—C21	1.398 (6)	O1—C76	1.224 (6)
C20—C25	1.396 (6)	N1—C76	1.333 (6)
C21—C22	1.397 (6)	N1—C77	1.452 (6)
C21—H21	0.9500	N1—C78	1.465 (7)
C22—C23	1.384 (8)	С76—Н76	0.9500
C22—H22	0.9500	С77—Н77А	0.9800
C23—C24	1.376 (8)	С77—Н77В	0.9800
C23—H23	0.9500	С77—Н77С	0.9800
C24—C25	1.398 (7)	С78—Н78А	0.9800

C24—H24	0.9500	C78—H78B	0.9800
C25—H25	0.9500	С78—Н78С	0.9800
C26—C27	1.387 (6)	O2—C79	1.237 (7)
C26—C31	1.399 (6)	N2—C79	1.300 (7)
C27—C28	1.383 (7)	N2—C81	1.427 (7)
С27—Н27	0.9500	N2—C80	1.481 (7)
C28—C29	1.392 (7)	С79—Н79	0.9500
C28—H28	0.9500	C80—H80A	0.9800
C29—C30	1.401 (7)	C80—H80B	0.9800
C29—H29	0.9500	C80—H80C	0.9800
C30—C31	1.376 (7)	C81—H81A	0.9800
С30—Н30	0.9500	C81—H81B	0.9800
C31—H31	0.9500	C81—H81C	0.9800
S4—W1—S1	107.81 (4)	C25—C24—H24	119.8
S4—W1—S3	108.47 (4)	C20—C25—C24	120.0 (5)
S1—W1—S3	109.03 (4)	С20—С25—Н25	120.0
S4—W1—S2	108.04 (4)	С24—С25—Н25	120.0
S1—W1—S2	111.20 (4)	C27—C26—C31	118.3 (4)
S3—W1—S2	112.14 (4)	C27—C26—P5	118.7 (3)
S4—W1—Ag2	131.67 (3)	C31—C26—P5	123.0 (3)
S1—W1—Ag2	120.49 (3)	C28—C27—C26	121.5 (5)
S3—W1—Ag2	55.67 (3)	С28—С27—Н27	119.2
S2—W1—Ag2	57.14 (3)	С26—С27—Н27	119.2
S4—W1—Ag1	136.25 (3)	C27—C28—C29	119.8 (5)
S1—W1—Ag1	56.40 (3)	C27—C28—H28	120.1
S3—W1—Ag1	115.24 (3)	С29—С28—Н28	120.1
S2—W1—Ag1	56.88 (3)	C28—C29—C30	119.2 (5)
Ag2—W1—Ag1	78.214 (10)	С28—С29—Н29	120.4
\$8—W2—\$6	110.73 (6)	С30—С29—Н29	120.4
S8—W2—S7	109.18 (5)	C31—C30—C29	120.2 (4)
S6—W2—S7	109.38 (5)	С31—С30—Н30	119.9
S8—W2—S5	108.25 (5)	С29—С30—Н30	119.9
S6—W2—S5	110.66 (4)	C30—C31—C26	120.9 (4)
S7—W2—S5	108.61 (4)	C30—C31—H31	119.5
S8—W2—Ag4	148.67 (5)	С26—С31—Н31	119.5
S6—W2—Ag4	100.53 (4)	C33—C32—C37	119.0 (4)
S7—W2—Ag4	60.14 (3)	C33—C32—P5	118.1 (3)
S5—W2—Ag4	56.25 (3)	C37—C32—P5	122.8 (3)
S8—W2—Ag3	112.82 (4)	C32—C33—C34	120.8 (4)
S6—W2—Ag3	58.26 (3)	С32—С33—Н33	119.6
S7—W2—Ag3	137.85 (3)	С34—С33—Н33	119.6
S5—W2—Ag3	54.42 (3)	C33—C34—C35	119.6 (4)
Ag4—W2—Ag3	81.533 (11)	C33—C34—H34	120.2
P1—Ag1—S1	125.90 (4)	С35—С34—Н34	120.2
P1—Ag1—S2	125.34 (4)	C36—C35—C34	120.2 (4)
S1—Ag1—S2	92.36 (4)	С36—С35—Н35	119.9
P1—Ag1—S5	112.32 (4)	С34—С35—Н35	119.9
S1—Ag1—S5	103.87 (4)	C35—C36—C37	119.7 (4)
S2—Ag1—S5	89.89 (3)	С35—С36—Н36	120.2

P1—Ag1—W1	156.66 (3)	С37—С36—Н36	120.2
S1—Ag1—W1	46.40 (3)	C32—C37—C36	120.6 (4)
S2—Ag1—W1	47.43 (2)	С32—С37—Н37	119.7
S5—Ag1—W1	90.70 (2)	С36—С37—Н37	119.7
P2—Ag2—S3	134.21 (4)	P5—C38—P4	114.5 (2)
P2—Ag2—S2	118.94 (4)	Р5—С38—Н38А	108.6
S3—Ag2—S2	93.86 (4)	P4—C38—H38A	108.6
P2—Ag2—S5	112.41 (4)	Р5—С38—Н38В	108.6
S3—Ag2—S5	98.39 (4)	P4—C38—H38B	108.6
S2—Ag2—S5	88.61 (3)	H38A—C38—H38B	107.6
P2—Ag2—W1	155.06 (3)	C40—C39—C44	119.8 (4)
S3—Ag2—W1	46.95 (3)	C40—C39—P4	119.9 (3)
S2—Ag2—W1	47.38 (2)	C44—C39—P4	120.1 (3)
S5—Ag2—W1	89.76 (2)	C41—C40—C39	119.5 (4)
P4—Ag3—P3	130.09 (4)	C41—C40—H40	120.3
P4—Ag3—S5	105.22 (4)	C39—C40—H40	120.3
P3—Ag3—S5	123.65 (4)	C42—C41—C40	120.6 (5)
P4—Ag3—S6	102.12 (4)	C42—C41—H41	119.7
P3—Ag3—S6	90.68 (4)	C40—C41—H41	119.7
S5—Ag3—S6	87.08 (4)	C41—C42—C43	120.5 (5)
P4—Ag3—W2	117.46 (3)	C41—C42—H42	119.8
P3—Ag3—W2	104.71 (3)	C43—C42—H42	119.8
S5—Ag3—W2	45.48 (2)	C42—C43—C44	119.6 (4)
S6—Ag3—W2	42.93 (3)	С42—С43—Н43	120.2
P6—Ag4—P5	122.24 (4)	C44—C43—H43	120.2
P6—Ag4—S5	117.74 (4)	C39—C44—C43	120.0 (4)
P5—Ag4—S5	115.87 (4)	С39—С44—Н44	120.0
P6—Ag4—S7	91.08 (4)	C43—C44—H44	120.0
P5—Ag4—S7	112.28 (4)	C46—C45—C50	119.2 (4)
S5—Ag4—S7	86.36 (4)	C46—C45—P4	120.1 (3)
P6—Ag4—W2	124.47 (3)	C50—C45—P4	120.5 (4)
P5—Ag4—W2	107.12 (3)	C45—C46—C47	119.9 (5)
S5—Ag4—W2	47.06 (3)	C45—C46—H46	120.0
S7—Ag4—W2	44.41 (2)	С47—С46—Н46	120.0
W1—S1—Ag1	77.20 (4)	C48—C47—C46	119.9 (5)
W1—S2—Ag1	75.69 (3)	С48—С47—Н47	120.0
W1—S2—Ag2	75.48 (3)	С46—С47—Н47	120.0
Ag1—S2—Ag2	93.50 (4)	C49—C48—C47	120.2 (5)
W1—S3—Ag2	77.39 (3)	C49—C48—H48	119.9
W2—S5—Ag4	76.69 (3)	C47—C48—H48	119.9
W2—S5—Ag3	80.10 (3)	C48—C49—C50	120.7 (5)
Ag4—S5—Ag3	102.12 (4)	C48—C49—H49	119.7
W2—S5—Ag1	128.34 (4)	С50—С49—Н49	119.7
Ag4—S5—Ag1	92.22 (4)	C49—C50—C45	120.0 (5)
Ag3—S5—Ag1	150.82 (5)	С49—С50—Н50	120.0
W2—S5—Ag2	114.86 (4)	С45—С50—Н50	120.0
Ag4—S5—Ag2	167.86 (5)	C56—C51—C52	119.1 (5)
Ag3—S5—Ag2	77.31 (3)	C56—C51—P3	123.5 (4)
Ag1—S5—Ag2	83.40 (3)	C52—C51—P3	117.4 (4)

W2—S6—Ag3	78.81 (4)	C51—C52—C53	120.6 (6)
W2—S7—Ag4	75.45 (3)	С51—С52—Н52	119.7
C1—P1—C7	106.7 (2)	С53—С52—Н52	119.7
C1—P1—C13	101.0 (2)	C54—C53—C52	119.9 (5)
C7—P1—C13	104.3 (2)	С54—С53—Н53	120.0
C1—P1—Ag1	111.83 (16)	С52—С53—Н53	120.0
C7—P1—Ag1	112.73 (15)	C53—C54—C55	120.3 (5)
C13—P1—Ag1	119.05 (14)	С53—С54—Н54	119.8
C70—P2—C64	102.5 (2)	С55—С54—Н54	119.8
C70—P2—C63	104.0 (2)	C56—C55—C54	119.7 (6)
C64—P2—C63	106.9 (2)	С56—С55—Н55	120.1
C70—P2—Ag2	113.57 (15)	С54—С55—Н55	120.1
C64—P2—Ag2	111.52 (15)	C51—C56—C55	120.4 (5)
C63—P2—Ag2	116.97 (15)	С51—С56—Н56	119.8
C57—P3—C51	103.1 (2)	С55—С56—Н56	119.8
C57—P3—C63	103.1 (2)	C62—C57—C58	119.2 (4)
C51—P3—C63	103.4 (2)	C62—C57—P3	120.5 (3)
C57—P3—Ag3	122.93 (15)	С58—С57—Р3	120.2 (3)
C51—P3—Ag3	109.79 (15)	C59—C58—C57	120.2 (4)
C63—P3—Ag3	112.48 (15)	С59—С58—Н58	119.9
C39—P4—C45	104.2 (2)	С57—С58—Н58	119.9
C39—P4—C38	102.7 (2)	C58—C59—C60	120.2 (5)
C45—P4—C38	101.0 (2)	С58—С59—Н59	119.9
C39—P4—Ag3	124.25 (15)	С60—С59—Н59	119.9
C45—P4—Ag3	110.63 (15)	C61—C60—C59	120.5 (4)
C38—P4—Ag3	111.39 (15)	С61—С60—Н60	119.7
C32—P5—C26	103.6 (2)	С59—С60—Н60	119.7
C32—P5—C38	100.7 (2)	C60—C61—C62	120.1 (4)
C26—P5—C38	105.3 (2)	C60—C61—H61	120.0
C32—P5—Ag4	112.51 (15)	С62—С61—Н61	120.0
C26—P5—Ag4	109.23 (15)	C57—C62—C61	119.8 (4)
C38—P5—Ag4	123.52 (15)	С57—С62—Н62	120.1
C14—P6—C20	103.7 (2)	С61—С62—Н62	120.1
C14—P6—C13	107.2 (2)	P2—C63—P3	112.0 (2)
C20—P6—C13	103.2 (2)	Р2—С63—Н63А	109.2
C14—P6—Ag4	121.93 (15)	Р3—С63—Н63А	109.2
C20—P6—Ag4	108.08 (14)	Р2—С63—Н63В	109.2
C13—P6—Ag4	110.97 (15)	Р3—С63—Н63В	109.2
C6—C1—C2	119.4 (5)	H63A—C63—H63B	107.9
C6—C1—P1	123.9 (4)	C69—C64—C65	118.7 (4)
C2—C1—P1	116.7 (4)	C69—C64—P2	118.9 (4)
C3—C2—C1	119.9 (6)	C65—C64—P2	122.4 (4)
С3—С2—Н2	120.1	C64—C65—C66	120.7 (5)
C1—C2—H2	120.1	С64—С65—Н65	119.6
C2—C3—C4	119.8 (6)	С66—С65—Н65	119.6
С2—С3—Н3	120.1	C67—C66—C65	120.0 (5)
С4—С3—Н3	120.1	С67—С66—Н66	120.0
C5—C4—C3	120.6 (6)	С65—С66—Н66	120.0
С5—С4—Н4	119.7	C66—C67—C68	120.3 (5)

C3—C4—H4	119.7	С66—С67—Н67	119.9
C4—C5—C6	120.1 (6)	С68—С67—Н67	119.9
C4—C5—H5	120.0	C67—C68—C69	119.6 (5)
С6—С5—Н5	120.0	С67—С68—Н68	120.2
C1—C6—C5	120.2 (6)	С69—С68—Н68	120.2
С1—С6—Н6	119.9	C64—C69—C68	120.7 (5)
С5—С6—Н6	119.9	С64—С69—Н69	119.7
C12—C7—C8	119.3 (4)	С68—С69—Н69	119.7
C12—C7—P1	123.2 (4)	C71—C70—C75	119.5 (4)
C8—C7—P1	117.6 (4)	C71—C70—P2	123.7 (4)
C9—C8—C7	120.7 (5)	C75—C70—P2	116.8 (3)
С9—С8—Н8	119.6	C70—C71—C72	120.0 (4)
С7—С8—Н8	119.6	С70—С71—Н71	120.0
C8—C9—C10	119.4 (5)	С72—С71—Н71	120.0
С8—С9—Н9	120.3	C73—C72—C71	120.2 (4)
С10—С9—Н9	120.3	С73—С72—Н72	119.9
C9—C10—C11	120.8 (5)	С71—С72—Н72	119.9
C9—C10—H10	119.6	C72—C73—C74	120.2 (4)
C11-C10-H10	119.6	С72—С73—Н73	119.9
C12-C11-C10	120.2 (5)	С74—С73—Н73	119.9
C12—C11—H11	119.9	C75—C74—C73	119.6 (5)
C10-C11-H11	119.9	С75—С74—Н74	120.2
C11—C12—C7	119.7 (5)	С73—С74—Н74	120.2
C11—C12—H12	120.2	C74—C75—C70	120.4 (5)
C7—C12—H12	120.2	С74—С75—Н75	119.8
P1—C13—P6	114.1 (2)	С70—С75—Н75	119.8
Р1—С13—Н13А	108.7	C76—N1—C77	121.0 (5)
P6-C13-H13A	108.7	C76—N1—C78	121.9 (4)
Р1—С13—Н13В	108.7	C77—N1—C78	117.1 (4)
Р6—С13—Н13В	108.7	O1—C76—N1	125.7 (5)
H13A—C13—H13B	107.6	O1—C76—H76	117.1
C19—C14—C15	118.8 (4)	N1—C76—H76	117.1
C19—C14—P6	122.1 (3)	N1—C77—H77A	109.5
C15—C14—P6	119.1 (4)	N1—C77—H77B	109.5
C16-C15-C14	120.5 (4)	Н77А—С77—Н77В	109.5
С16—С15—Н15	119.7	N1—C77—H77C	109.5
C14—C15—H15	119.7	Н77А—С77—Н77С	109.5
C17—C16—C15	120.6 (5)	Н77В—С77—Н77С	109.5
C17—C16—H16	119.7	N1—C78—H78A	109.5
C15-C16-H16	119.7	N1—C78—H78B	109.5
C16—C17—C18	119.7 (5)	H78A—C78—H78B	109.5
С16—С17—Н17	120.2	N1—C78—H78C	109.5
C18—C17—H17	120.2	H78A—C78—H78C	109.5
C19—C18—C17	120.0 (5)	H78B—C78—H78C	109.5
C19—C18—H18	120.0	C79—N2—C81	125.7 (5)
C17—C18—H18	120.0	C79—N2—C80	120.2 (5)
C14—C19—C18	120.4 (4)	C81—N2—C80	114.1 (5)
C14—C19—H19	119.8	O2—C79—N2	125.1 (6)
C18—C19—H19	119.8	O2—C79—H79	117.4

C21—C20—C25	118.8 (4)	N2—C79—H79	117.4
C21—C20—P6	123.1 (4)	N2	109.5
C25—C20—P6	117.8 (4)	N2	109.5
C22—C21—C20	120.7 (5)	H80A—C80—H80B	109.5
С22—С21—Н21	119.7	N2	109.5
С20—С21—Н21	119.7	H80A—C80—H80C	109.5
C23—C22—C21	119.7 (5)	H80B—C80—H80C	109.5
С23—С22—Н22	120.2	N2	109.5
С21—С22—Н22	120.2	N2	109.5
C24—C23—C22	120.3 (5)	H81A—C81—H81B	109.5
С24—С23—Н23	119.9	N2	109.5
С22—С23—Н23	119.9	H81A—C81—H81C	109.5
C23—C24—C25	120.5 (5)	H81B—C81—H81C	109.5
C23—C24—H24	119.8		

Fig. 1

